Shape controlled interpolatory ternary subdivision

نویسندگان

  • Carolina Vittoria Beccari
  • Giulio Casciola
  • Lucia Romani
چکیده

Ternary subdivision schemes compare favorably with their binary analogues because they are able to generate limit functions with the same (or higher) smoothness but smaller support. In this work we consider the two issues of local tension control and conics reproduction in univariate interpolating ternary refinements. We show that both these features can be included in a unique interpolating 4-point subdivision method by means of non-stationary insertion rules that do not affect the improved smoothness and locality of ternary schemes. This is realized by exploiting local shape parameters associated with the initial polyline edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Controllable Ternary Interpolatory Subdivision Scheme

A non-uniform 3-point ternary interpolatory subdivision scheme with variable subdivision weights is introduced. Its support is computed. The C and C convergence analysis are presented. To elevate its controllability, a modified edition is proposed. For every initial control point on the initial control polygon a shape weight is introduced. These weights can be used to control the shape of the c...

متن کامل

An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control

In this paper we present a non-stationary 4-point ternary interpolatory subdivision scheme which provides the user with a tension parameter that, when increased within its range of definition, can generate C2-continuous limit curves showing considerable variations of shape. As a generalization we additionally propose a locally-controlled C2-continuous subdivision scheme, which allows a differen...

متن کامل

Optimal C Two-dimensional Interpolatory Ternary Subdivision Schemes with Two-ring Stencils

For any interpolatory ternary subdivision scheme with two-ring stencils for a regular triangular or quadrilateral mesh, we show that the critical Hölder smoothness exponent of its basis function cannot exceed log3 11(≈ 2.18266), where the critical Hölder smoothness exponent of a function f : R2 → R is defined to be ν∞(f) := sup{ν : f ∈ Lip ν}. On the other hand, for both regular triangular and ...

متن کامل

Ternary interpolatory Subdivision Schemes Originated from splines

A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...

متن کامل

Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils

For any interpolatory ternary subdivision scheme with two-ring stencils for a regular triangular or quadrilateral mesh, in this paper we show that the critical Hölder smoothness exponent of its basis function cannot exceed log3 11(≈ 2.18266), where the critical Hölder smoothness exponent of a function f : R2 7→ R is defined to be ν∞(f) := sup{ν : f ∈ Lip ν}. On the other hand, for both regular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 215  شماره 

صفحات  -

تاریخ انتشار 2009